Differential equations on complex projective hypersurfaces of low dimension
نویسندگان
چکیده
منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملpseudo ricci symmetric real hypersurfaces of a complex projective space
pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملReal Hypersurfaces of a Complex Projective Space Satisfying Certain Conditions
The objective of the present paper is to study real hyper surfaces of a complex projective space with generalized recurrent second fundamental tensor and it is shown that such type real hyper surface exist. Also, we study real hyper surfaces of a complex projective space with generalized recurrent Ricci tensor. It is proved that a real hyper surfaces of complex projective space is generalized R...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2008
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x07003478